
Daphne Preston-Kendal
European Lisp Symposium 2024
6 May 2024

R7RS Large
Status Report

The story so far …

• Report on Scheme (1975), Revised Report (1978), Sussman & Steele

• RnRS specifications up to R5RS (1998) devised by unanimous consensus

• R6RS (2007) not as widely adopted, frequently criticized

• 2009: Scheme Steering Committee resolves to split the language in two

• R7RS Small (2013) more conservative revision of R5RS, adopted in some form
by all maintained R5RS implementations

R7RS Small (2013)
Headline features compared to R5RS

• Portable library system (R6RS interoperable)

• Exception raising and handling (R6RS compatible)

• Record type definitions (R6RS interoperable)

• Clean(ish) split between binary and textual (Unicode) I/O (R6RS interoperable)

• Parameters (variable-like boxes with dynamic scope)

R7RS Large

• Began 2014

• 2022 split into two or three parts:

• Foundations: core language semantics, hopefully done by end of 2025

• Batteries: useful standard libraries that are unlikely to go out of date,
finished soon after

• Environments: OS interfaces, no target completion date yet

• ‘R6RS compatible’

Recent work: Macros

R5RS macros
(define-syntax swap!
 (syntax-rules ()
 ((_ x y)
 (let ((temp x))
 (set! x y)
 (set! y temp)))))

• Pattern matching and substitution with fully automatic hygiene

• Good for simple macros; otherwise a Turing tarpit (no compile-time Scheme
evaluation)

• No way to choose to break hygiene

R6RS macros
(define-syntax swap!
 (lambda (stx)
 (syntax-case stx ()
 ((_ x y)
 #'(let ((temp x))
 (set! x y)
 (set! y temp))))))

• syntax-case, extension of syntax-rules allowing interleaving Scheme
evaluation with pattern-based expansion

R6RS macros
Breaking hygiene

(define-syntax with-return
 (λ (stx)
 (syntax-case stx ()
 ((k body0 body1 …)
 (let ((return-id
 (datum->syntax #'k 'return))))
 #`(call/cc
 (λ (#,return-id)
 body0 body1 ...))))))

R6RS macros
Identifier macros

(define-syntax fast-concatenate
 (λ (stx)
 (syntax-case stx (map)
 ((_ (map f ls_0 ls_1 ...))
 #'(append-map f ls_0 ls_1 ...))
 ((_ ls)
 #'(concatenate ls))
 (id
 (identifier? #'id)
 #'concatenate))))

Criticisms of R6RS syntax-case

• Pattern matching as the only portable way to destructure macro input

• High-level syntactic system with no low-level procedural counterpart

• R7RS Large solution: unwrap-syntax procedure

• Identifier macros mean macros cannot tell whether identifiers they receive are
variables or macros

• R6RS and R7RS editors’ reply: code walking macros are inherently broken;
identifier syntax which doesn’t behave like a variable is bad style anyway

• Others we don’t understand: too ‘large’, reader extensions, etc.

New in R7RS Large: Identifier properties

• Like classical Lisp symbol properties, but respect lexical scoping and the
library system

• Properties imported when their corresponding libraries are exported

• Properties have full lexical shadowing behaviour

• Available only at expand time (but also by extension through eval)

Identifier property use cases

• Attach information to bindings which useful to programmers, e.g.
documentation and debug info

• Families of macros which communicate information to one another

• Establish context-specific usages for identifiers

• With identifier properties and unwrap-syntax, syntax-case can be
expressed portably in terms of lower level primitives for the first time

• Racket match alike (like Emacs Lisp pcase) with extensible patterns

New in R7RS Large: Syntax parameters

• An alternative to fully breaking hygiene: adjust an existing, known transformer
binding shared between macro author and macro user

(define-syntax-parameter return
 (erroneous-syntax "return must be used inside with-return"))

(define-syntax with-return
 (syntax-rules ()
 ((_ body0 body1 ...)
 (call/cc
 (λ (return-proc)
 (syntax-parameterize
 ((return (identifier-syntax return-proc))
 body0 body1 ...)))))))

Future work

Procedural and Valued Fascicles

• Storage management: ephemerons (the ‘right’ weak pair primitive) and
guardians (quasi-deterministic, generation-friendly finalization)

• Challenge: compaction-friendly hash-based data structure primitives for eq?
and friends

Looking further on

• Condition system including guaranteed exception raising (small language has
lots of undefined behaviours)

• Maybe restarts like Common Lisp

• Delimited control operators – complementing and/or extending call/cc, not
replacing it

• Maybe threading (hard to require on some platforms)

Foundations challenges

• User enthusiasm for a larger core portable Scheme language is high

• Implementer enthusiasm: ???

• Volunteer effort

Batteries

• Data structures, algorithmic primitives, etc. you expect in a functional
language in (current-year)

• Portable in terms of the Foundations – ‘alternative preludes’ encouraged

• Conservative in scope

Environments

• Scope and overall approach still very unclear

• Potentially a huge project

• Must-haves in my own personal view (not necessarily others’):

• TCP networking – hopefully simple TLS too

• Cross-platform pathname and filesystem stuff

• Some limited process control

dpk@nonceword.org

Question Time

mailto:dpk@nonceword.org

