R’RS Large

Status Report

Daphne Preston-Kendal
European Lisp Symposium 2024
6 May 2024

The story so far ...

* Report on Scheme (1975), Revised Report (1978), Sussman & Steele
 R"RS specifications up to R°RS (1998) devised by unanimous consensus
* R6RS (2007) not as widely adopted, frequently criticized

e 2009: Scheme Steering Committee resolves to split the language in two

« R’RS Small (2013) more conservative revision of R°RS, adopted in some form
by all maintained R5RS implementations

R7RS Small (2013)

Headline features compared to R°RS

* Portable library system (R6RS interoperable)

* Exception raising and handling (R°RS compatible)

* Record type definitions (R6RS interoperable)

* Clean(ish) split between binary and textual (Unicode) I/0O (R6RS interoperable)

 Parameters (variable-like boxes with dynamic scope)

R’RS Large

 Began 2014
o 2022 split into two or three parts:
 Foundations: core language semantics, hopefully done by end of 2025

» Batteries: useful standard libraries that are unlikely to go out of date,
finished soon after

 Environments: OS interfaces, no target completion date yet

 ‘R6RS compatible’

Recent work: Macros

R5RS macros

(define-syntax swap!
(syntax-rules ()

((_ X y)
(let ((temp x))
(set! x vy)

(set! y temp)))))

o Pattern matching and substitution with fully automatic hygiene

» (Good for simple macros; otherwise a Turing tarpit (ho compile-time Scheme
evaluation)

 No way to choose to break hygiene

R6RS macros

(define-syntax swap!
(lambda (stx)
(syntax-case stx ()

((_ X y)
#'(let ((temp x))
(set! x y)

(set! y temp))))))

e syntax—case, extension of syntax—-rules allowing interleaving Scheme
evaluation with pattern-based expansion

R6RS macros
Breaking hygiene

(define-syntax with-return
(A (stx)

(syntax—-case stx ()

((k bodye body; .)

(let ((return-1id
(datum->syntax #'k 'return))))

(call/cc
(A (#,return-1d)
bodye body: ...))))))

R6RS macros

ldentifier macros

(define-syntax fast-concatenate
(AN (stx)
(syntax—-case stx (map)
((_ (map f ls_0 ls_1 ...))
#' (append-map f 1ls_0 1ls_1 ...))

((_ Lls)
#' (concatenate ls))
(1d

(1dentifier? #'1d)
#'concatenate))))

Criticisms of R6RS syntax—case

» Pattern matching as the only portable way to destructure macro input
* High-level syntactic system with no low-level procedural counterpart
 R7RS Large solution: unwrap-syntax procedure

* |dentifier macros mean macros cannot tell whether identifiers they receive are
variables or macros

 RSRS and R7RS editors’ reply: code walking macros are inherently broken;
identifier syntax which doesn’t behave like a variable is bad style anyway

* Others we don’t understand: too ‘large’, reader extensions, etc.

New in R7RS Large: Identifier properties

» |ike classical Lisp symbol properties, but respect lexical scoping and the
library system

* Properties imported when their corresponding libraries are exported
* Properties have full lexical shadowing behaviour

* Avalilable only at expand time (but also by extension through eval)

Identifier property use cases

o Attach information to bindings which useful to programmers, e.g.
documentation and debug info

e Families of macros which communicate information to one another

» Establish context-specific usages for identifiers

e With identifier properties and unwrap-syntax, syntax—-case can be
expressed portably in terms of lower level primitives for the first time

 Racket match alike (like Emacs Lisp pcase) with extensible patterns

New in R’RS Large: Syntax parameters

(define-syntax—-parameter return
(erroneous-syntax "return must be used inside with-return"))

(define-syntax with-return
(syntax-rules ()
((_ body® bodyl ...)
(call/cc
(A (return-proc)
(syntax—-parameterize

((return (identifier-syntax return-proc))
body® bodyl ...)))))))

* An alternative to fully breaking hygiene: adjust an existing, known transformer
binding shared between macro author and macro user

Future work

Procedural and Valued Fascicles

o Storage management: ephemerons (the ‘right’ weak pair primitive) and
guardians (quasi-deterministic, generation-friendly finalization)

 Challenge: compaction-friendly hash-based data structure primitives for eq?
and friends

Looking further on

* Condition system including guaranteed exception raising (small language has
lots of undefined behaviours)

 Maybe restarts like Common Lisp

e Delimited control operators — complementing and/or extending call/cc, not
replacing It

 Maybe threading (hard to require on some platforms)

Foundations challenges

* User enthusiasm for a larger core portable Scheme language is high
* Implementer enthusiasm: ???

e \olunteer effort

Batteries

» Data structures, algorithmic primitives, etc. you expect in a functional
language in (current-year)

 Portable in terms of the Foundations — ‘alternative preludes’ encouraged

 Conservative in scope

Environments

 Scope and overall approach still very unclear

* Potentially a huge project

 Must-haves in my own personal view (not necessarily others’):
 TCP networking — hopefully simple TLS too
* Cross-platform pathname and filesystem stuff

e Some limited process control

Question Time

dpk@nonceword.org

mailto:dpk@nonceword.org

